THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH3280 Introductory Probability 2023-2024 Term 1
 Suggested Solutions of Homework Assignment 7

Q1

Compute the second derivative of Φ.

$$
\Phi^{\prime \prime}(t)=\frac{M^{\prime \prime}(t)}{M(t)}-\left(\frac{M^{\prime}(t)}{M(t)}\right)^{2} .
$$

Hence

$$
\left.\Phi^{\prime \prime}(t)\right|_{l=0}=\frac{M^{\prime \prime}(0)}{M(0)}-\left(\frac{M^{\prime}(0)}{M(0)}\right)^{2}=E\left(X^{2}\right)-E(X)^{2}=\operatorname{Var}(X) .
$$

Q2

Since $\mu=\sigma^{2}=20$, by Chebyshev's inequality, we have

$$
\begin{aligned}
P(0<X<40) & =P(-20<X-20<20)=P(|X-20|<20) \\
& =1-P(|X-20| \geq 20) \geq 1-\frac{1}{(\sqrt{20})^{2}}=\frac{19}{20} .
\end{aligned}
$$

Q3

(a) By Markov's inequality,

$$
P\left(\sum_{i=1}^{20} X_{i}>15\right) \leq \frac{E\left(\sum_{i=1}^{20} X_{i}\right)}{15}=\frac{20}{15}=\frac{4}{3} .
$$

(b) As X_{i} takes integer values, by the central limit theorem,

$$
\begin{aligned}
P\left(\sum_{i=1}^{20} X_{i}>15\right) & =P\left(\sum_{i=1}^{20} X_{i}>15.5\right) \\
& =P\left(\frac{\sum_{i=1}^{20} X_{i}-20}{\sqrt{20}}>\frac{15.5-20}{\sqrt{20}}\right) \\
& \approx 1-\Phi(-1.01) \\
& =\Phi(1.01) \\
& \approx 0.8438 .
\end{aligned}
$$

Q4

For $\varepsilon>0$, let $\delta>0$ be such that $|g(x)-g(\mathrm{c})|<\varepsilon$ whenever $|x-c| \leq \delta$. Also, let B be such that $|g(x)|<B$. Then,

$$
\begin{aligned}
E\left[g\left(Z_{n}\right)\right] & =\int_{|x-c| \leq \delta} g(x) d F_{n}(x)+\int_{|x-c|>\delta} g(x) d F_{n}(x) \\
& \leq(\varepsilon+g(\mathrm{c})) P\left\{\left|Z_{n}-c\right| \leq \delta\right\}+B \cdot P\left\{\left|Z_{n}-c\right|>\delta\right\}
\end{aligned}
$$

In addition, the same equality yields that

$$
E\left[g\left(Z_{n}\right)\right] \geq(g(c)-\varepsilon) P\left\{\left|Z_{n}-c\right| \leq \delta\right\}-B \cdot P\left\{\left|Z_{n}-c\right|>\delta\right\}
$$

Upon letting $n \rightarrow \infty$, we obtain that

$$
\begin{aligned}
& \limsup E\left[g\left(Z_{n}\right)\right] \leq g(c)+\varepsilon \\
& \lim \inf E\left[g\left(Z_{n}\right)\right] \geq g(c)-\varepsilon
\end{aligned}
$$

The result now follows since ε is arbitrary.

Q5

Let X_{1}, X_{2}, \ldots be independent Bernoulli random variables with mean x. Define

$$
Z_{n}=\frac{X_{1}+\cdots X_{n}}{n}
$$

By the weak law of large numbers, for each $\varepsilon>0$,

$$
P\left\{\left|Z_{n}-x\right|>\varepsilon\right\} \rightarrow 0 \text { as } n \rightarrow \infty
$$

(Alternatively, using central limit theorem to compute the probability $P\left\{\left|Z_{n}-x\right|>\varepsilon\right\}=2 \Phi\left(-\frac{\varepsilon \sqrt{n}}{\sigma}\right) \rightarrow 0$ as $n \rightarrow \infty$.)
Since f defined on $[0,1]$ is continuous, f is bounded. Applying Problem 4 with $c=x$ and $g=f$, we have

$$
E\left[f\left(Z_{n}\right)\right] \rightarrow f(x) \text { as } n \rightarrow \infty
$$

(Alternatively, set $h=|f-f(x)|$ on $[0,1]$, then h is continuous and bounded above by some contant M. For each $\varepsilon>0$. By the continuity of $h, \exists \delta>$ $0, \forall\left|Z_{n}-x\right| \leq \delta, h \leq \frac{\varepsilon}{2}$. By the weak law of large numbers, $\exists N \in \mathbb{N}$ such that $\forall n \geq N, P\left(\left|Z_{n}-x\right|>\delta\right) \leq \frac{\varepsilon}{2 M}$. Hence

$$
E\left[h\left(Z_{n}\right)\right] \leq \frac{\varepsilon}{2} P\left(\left|Z_{n}-x\right| \leq \delta\right)+M P\left(\left|Z_{n}-x\right|>\delta\right) \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \leq \varepsilon
$$

It follows that $E\left[h\left(Z_{n}\right)\right] \rightarrow 0$, thus $E\left[f\left(Z_{n}\right)\right] \rightarrow f(x)$ as $n \rightarrow \infty$.) On the other hand,

$$
\begin{aligned}
E\left[f\left(Z_{n}\right)\right] & =\sum_{k=0}^{n} f\left(\frac{k}{n}\right) P\left(X_{1}+\cdots+X_{n}=k\right) \\
& =\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}=B_{n}(x)
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty} B_{n}(x)=f(x) .
$$

Q6

For $i<\lambda$, we can apply the Chernoff bound to get

$$
P(X \leq i)=\leq e^{-t i} M_{X}(t)=e^{-t i} e^{\lambda\left(e^{t}-1\right)}, \quad t<0 .
$$

Let $f(t)=e^{\lambda e^{t}-t i-\lambda}, t<0 . f(t)$ obtains its minimal value at $t=\log \left(\frac{i}{\lambda}\right)<0$. Then put $t=\log \left(\frac{i}{\lambda}\right)$, we get

$$
P(X \leq i) \leq\left(\frac{\lambda}{i}\right)^{i} e^{i-\lambda}
$$

Alternatively, for $i<\lambda$,

$$
\begin{aligned}
P(X \leq i) & =\sum_{n=0}^{i} \frac{e^{-\lambda} \lambda^{n}}{n!} \\
& =\frac{e^{-\lambda} \lambda^{i}}{i^{i}} \sum_{n=0}^{i} \frac{i^{n}}{n!}\left(\frac{i}{\lambda}\right)^{i-n} \\
& \leq \frac{e^{-\lambda} \lambda^{i}}{i^{i}} \sum_{n=0}^{\infty} \frac{i^{n}}{n!} \\
& =\frac{e^{i-\lambda} \lambda^{i}}{i^{i}}
\end{aligned}
$$

